Vol. 6 (1983) $23-36\}$

the greatest souare free factor of A BINARY RECURSIVE SEQUENCE

By T. N. SHOREY

8 1. For any sequence of Integers $u_{0}, v_{1}, \ldots, u_{m}, \ldots$ satisfying

$$
\mathbf{u}_{\mathrm{m}}=\mathrm{r} \mathbf{u}_{\mathrm{m}-1}+\mathrm{s} \mathbf{u}_{\mathrm{m}-2}, \mathrm{~m}=2,3 \ldots
$$

where E and s are rational integers vith $\mathrm{r}^{2}+4 \mathrm{~s} \neq 0$, we have

$$
\begin{equation*}
u_{m}=a \alpha^{m}+b \beta^{m}, m=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where α and β are reots of the polynomial $X^{2}-r X-1$ and

$$
\begin{equation*}
a=\frac{\mathbf{u}_{0} \beta-u_{1}}{\beta-\alpha}, b=\frac{u_{1}-u_{0} \alpha}{\beta-\alpha} . \tag{2}
\end{equation*}
$$

The polynomial $X^{2}-r X-s$ is called the polynomial associated to the sequence $\left\{u_{m}\right\}$. The sequence $\left\{u_{m}\right\}$ is said to be a non-degenerate binary recursive sequence If a, b, α, β are non-zero and α / β is not a root of unity. For a raticnal integer x with $|x|>1$, denote by $P(x)$ the greatest prime factor of x and by $Q(x)$ the greatent square free factor of x. If p_{1}, \ldots, p_{r} are all the distiact primes dividing x, then $Q(x)=p_{1} \ldots p_{s}$. For non-zero rational integers x and y, denote by $[x, y]$ and (x, y), respectively, the least common multiple and the greatest common divisor of x and y. Further we define $P(1)=P(-1)=1$ and

$$
P\left(\frac{x}{y}\right)=P\left(\frac{x}{(x, y)} \frac{y}{(x, y)}\right)=P\left(\frac{[x, y]}{(x, y)}\right)
$$

and

$$
Q\left(\frac{x}{y}\right)=Q\left(\frac{[x, y]}{(x, y)}\right)
$$

Lee $\left\{u_{m}\right\}$ be a non-degenerate binary' recursive sequence glven by (1). Stewait [4] proved that

$$
Q\left(u_{m}\right)>C\left(\frac{m}{\left((\log m)^{2}\right.}\right)^{1 / d}, m>C^{\prime}
$$

where $d=\left[Q(\alpha)::^{\prime} Q\right]$ and $C>0, C^{\prime}>0$ are effectively computable numbers depending only on a and b. Observé that $d=1$ or 2 . Further, if $|\alpha|>|\beta|$. Stewart $|\boldsymbol{|}|$ proved that for any 0 with $0<0<1$,

$$
\mathrm{Q}\left(\mathrm{u}_{\mathrm{m}}\right)>\mathrm{m}^{\theta}, \mathrm{m}>\mathrm{C}^{\prime \prime}
$$

where $\mathrm{C}^{\prime \prime}>0$ is an effectively computable number depending only on θ and the sequence $\left\{u_{m}\right\}$. We shall generallie and etrengthen this result at follows:

Theorem 1

Let $\left\{\mathrm{u}_{\mathrm{m}}\right\}$ be a non-degenerate binary recursive sequence, There exist effectively computable numbers $\mathrm{C}_{1}>0$ and $\mathrm{C}_{2}>0$ depending only on the sequence $\left\{\mathbf{u}_{\mathrm{m}}\right.$ \} such that for every $m>C_{1}$, we have

$$
\log Q\left(u_{m}\right)>C_{2}(\log m)^{2}(\log \log m)^{-1}
$$

The improvemeat depends on utilising the fact that the contribution from small primes in u_{m} is small. Stewart [5] proved theorem 1 for the grestest sqaare free factor of the members of Lucas and Lehmer sequences. Further, for Lucas and Lehmer sequences, Stewart [5] proved that for almost all m

$$
\log Q\left(u_{m}\right)>(\log m)^{2+\log 2-\varepsilon}, \varepsilon>0
$$

Theorem 1 is contalned in the following result.

Theorem 2

Let $\left\{u_{\mathrm{m}}\right\}$ be a non-degenerate binary recursive sequence. There exist effectively computable numbers $\mathrm{C}_{\mathbf{3}}>0$ and $\mathrm{C}_{4}>0$ depending only on the sequence $\left\{\mathbf{u}_{\mathrm{m}}\right\}$ such that for every pair m, n with $\mathrm{m}>\mathrm{n}, \mathrm{m}>\mathrm{C}_{3}$ and $\mathrm{u}_{\mathrm{n}} \neq 0$, we have

$$
\log Q\left(\Delta_{m, n}^{\prime}\right)>C_{4}(\log m)^{2}(\log \log m)^{-1}
$$

where

$$
\Delta_{m, n}^{\prime}=\left[u_{m}, u_{n}\right] /\left(u_{m}, u_{n}\right)
$$

For a non-degenerate binary recurslve sequence $\left\{u_{m}\right\}$, observe that the equation $\mathrm{o}_{\mathrm{m}}=0$ Implies that m is bounded by an effectively computable number depending only ot the sequence $\left\{\mathrm{u}_{\mathrm{m}}\right\}$. We apply theorem 2 with the least integer n (n is either 0 or 1) such that $u_{n} \neq 0$ to obtain theorem 1 . For estimates on $P\left(u_{m}\right)$ and $P\left(\Delta_{m}^{\prime}, n\right)$, wo refer to Stewart [4] and the author [3]. Seo also the next theorem.

Let $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ benon-degenerate binary recursive sequences whose associated polynomials are identically equal. Denote by α and β the roots of their asseciated polynomial. Then tre sequeace $\left\{u_{m}\right\}$ is given by (1) and (2). Further for $m=0,1,2, \ldots$, we have

$$
v_{m}=a_{1} \alpha^{m}+b_{1} \beta^{m}
$$

where

$$
a_{1}=\frac{v_{0} \beta-v_{1}}{\beta-\alpha}, b_{1}=\frac{v_{1}-v_{0} \alpha}{\beta-\alpha} .
$$

For m and n with $u_{m} v_{n} \neq 0$, put

$$
\Delta_{m, n}=\left[u_{m}, v_{n}\right] /\left(u_{m}, v_{n}\right)
$$

Then theorem 2 is a particular case of the following result. Theorem 3

Let $\mathrm{A}>0$ and $0<\mathrm{K}<(\mathrm{d}+1)^{-1}$ where $\mathrm{d}=[\mathrm{Q}(\alpha): \mathrm{Q}]$ There exist effectively computable numbers $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$ depending only on A, K, the sequences $\left\{\mathrm{u}_{\mathrm{m}}\right\}$ and $\left\{\nu_{\mathrm{m}}\right\}$ such that for every pair m, n with $m>n, m \geqslant C_{5}, v_{n} \neq 0$ and

$$
\begin{equation*}
\frac{a \alpha^{m}}{a_{1} \alpha^{n}} \neq \frac{b \beta^{m}}{b_{1} \beta^{n}} \tag{3}
\end{equation*}
$$

either

$$
\log P\left(\mathbb{A}_{m, n}\right)>(\log m)^{A}
$$

or

$$
\begin{aligned}
& \sum_{p \mid \Delta_{m, n}} 1>c_{6} \frac{\log m}{\log \log m} \\
& p>m^{K}
\end{aligned}
$$

where p runs through primes
For the proof of theorem 2, we may assume $\log P\left(\Delta_{m, s}^{\prime}\right)<(\log m)^{2}$. Then we apply theorem 3 with $\left\{u_{\mathrm{m}}\right\}=\left\{\nabla_{\mathrm{m}}\right\}, \mathrm{A}=2$ and $\mathrm{K}=\frac{1}{4} \quad$ Observe that (3) is satisfie, d, snce α / β is not a root of unity. Now the assertion of theorem 2 follows immediately.

The proof of theorem 3 depends on the theory of linear forms in logarithms. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic numb:rs Let K be their splitting field over $Q . P u t D=[K: Q]$

We denote by A_{1}, \ldots, A_{n} upper bounds for the hoighte of $\alpha_{1}, \ldots, \alpha_{n}$ respectively, where we assume that $A_{j}>3$ for $1<j<n$. Write

The proof of theorem 3 depends on the following theorem of Baker [1] on linear forms in logarithms.

Theorem A.
There exist effectively computable absolute constants $\mathrm{C}_{7}>0$ and $\mathrm{C}_{8}>0$ such that the inequalities

$$
\begin{aligned}
& 0<\left|\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right|< \\
& \exp \left(-\left(C_{7} n D\right)^{C_{8}}{ }^{n} \Omega \log \Omega^{\prime} \log B\right)
\end{aligned}
$$

have no solution in rational integers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$ with absolute values at most B (>2).

We shall also need a p-adic analogue, doe to van dor Poortea [2], of theorem A.

Theorem B.
Let \wp a a prime ideal of K lying above a rational prime p. There exist effectively computable absolute constants $\mathrm{C}_{9}>0$ and $\mathrm{C}_{10}>0$ such that the inequalities

$$
\begin{aligned}
& \infty>\operatorname{ord}_{\wp(}\left(\alpha_{1}^{b_{1}} \ldots \alpha_{n}^{b_{n}}-1\right)> \\
& \quad\left(C_{9} n D\right)^{C_{10}} \frac{p^{D}}{\log p} \Omega(\log B)^{2}
\end{aligned}
$$

have no solution in rational integers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$ whih absolute values at most $\mathrm{B}(>2)$.
§ 2. Proof of theorem 3.
(4)

$$
\text { Let } A>0 \text { and } 0<K<(d+1)^{-1} \text {. Put }
$$

Observe that $0<\tau<1$. Let $\left\{u_{m}\right\}$ and $\left\{\mathbf{v}_{\mathrm{m}}\right\}$ be as in therotm 3. There is no loss of generality in assuming that $|\alpha| \geqslant|\beta|$. Then, since α / β is not a root of unity, we find that $|\alpha|>1$. For algebraic integer $\approx \varepsilon Q(\alpha)$, denote by [x] the ideal generated by x in the rivg of integers of $Q(\alpha)$. There exists a positive rational integer k such that

$$
\left(\left[\alpha^{2}\right],\left[\beta^{2}\right]\right)=[k]
$$

Put $\alpha_{1}=\alpha^{2} / \mathrm{k}$ and $\beta_{1}=\beta^{2} / \mathrm{k}$. Then the Ideals $\left[\alpha_{1}\right]$ and [β_{1}] are relatively coprime. For $m=0,1,2, \ldots$, notice that

$$
\begin{aligned}
U_{m} & =k^{-m} u_{2 m}=Q \alpha_{1}^{m}+b \beta_{1}^{m}, \\
U_{m}^{\prime} & =k^{-m} u_{2 m+1}=\theta \alpha \alpha_{1}^{m}+b \beta \beta_{1^{\prime}}^{m} \\
v_{m} & =k^{-m} v_{2 m}=a_{1} \alpha_{1}^{m}+b_{1} \beta_{1}^{m} \\
v_{m}^{\prime} & =k^{-m} v_{2 m+1}=a_{1} \alpha \alpha_{1}^{m}+b_{1} \beta \beta_{1}^{m} .
\end{aligned}
$$

Observe that the sequences $\left\{U_{m}\right\},\left\{U_{m}^{\prime}\right\},\left\{V_{m}\right\}$ and $\left\{\mathbf{V}_{\mathbf{m}}^{\prime}\right\}$ are non-degenerate binary recursive sequences. By proving the theorem separately for sequences $\left\{U_{m}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}\right\},\left\{\mathrm{U}_{\mathrm{m}}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}^{\prime}\right\},\left\{\mathrm{U}_{\mathrm{m}}^{\prime}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}\right\},\left\{\mathrm{U}_{\mathrm{m}}^{\prime}\right\}$ and $\left\{\mathrm{V}_{\mathrm{m}}^{\prime}\right\}$, there is no lose of generality in assuming that $([\alpha],[\beta])=[1]$.

Denote by c_{1}, c_{2}, \ldots effectively computable positive numbers depending only on A, K, the sequences $\left\{u_{m}\right\}$ and
$\left\{v_{m}\right\}$. We may assume that $m>c_{1}$ with c_{1} sufficiontly large. Thed, since $\left\{u_{m}\right\}$ is non-degenerate, we see that $\mathbf{u}_{\mathrm{m}} \neq 0$, Let $0<\mathrm{n}<\mathrm{m}$ satisfy $\mathrm{v}_{\mathrm{n}} \neq 0$ and suppose that (3) is valld. We suppose

$$
\begin{equation*}
\operatorname{leg} P\left(\Delta_{m, n}\right)<(\log m)^{A} \tag{5}
\end{equation*}
$$

Let π_{1}, \ldots, π_{s} be all the rational primes satlafying $\left.\pi_{i}\right|^{\Delta_{m, n}}$ and $\pi_{1}>\mathrm{m}^{\mathrm{K}}$ for $1<1<\mathrm{e}$. Let $0<\varepsilon<1$. We suppose that

$$
\begin{equation*}
s<+\varepsilon(\log m)(\log \log m)^{-1} \tag{6}
\end{equation*}
$$

We shall arrive at a contradiction for a suitable choice of ε dependisg only on A, K the se quencer $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$. We write

$$
\begin{gather*}
B_{1}=\frac{u_{m}}{\left(u_{m}, v_{n}\right)}, \quad B_{2}=\frac{v_{n}}{\left(u_{m}, v_{n}\right)}, \tag{7}\\
\Lambda=\left(u_{m}, v_{n}\right) .
\end{gather*}
$$

Then
(8) $\quad \frac{u_{m}}{v_{n}}=\frac{B_{1}}{B_{2}}$ and $\left(B_{1}, B_{2}\right)=1$.

Further

$$
\begin{equation*}
\Delta_{m, n}= \pm B_{1} B_{2} \tag{9}
\end{equation*}
$$

For a prime p dividing B_{1}, we see from (7) that

$$
\operatorname{ord}_{p}\left(B_{1}\right)<\operatorname{ord}_{p}\left(n_{m}\right)
$$

Let \wp be a prime ideal in the ring of integers of $Q(\alpha)$ dividing p. Then, since the ideals $[\alpha]$ and $[\beta]$ are relatively prime, either $\wp 0$ does not divide $[\alpha]$ or \wp dees not divide $[\beta]$. For simplicity assume that \wp dots not divide [α]. Then, by (1), we have

$$
\operatorname{ord}_{p}\left(u_{m}\right)<\operatorname{ord}_{\wp}\left(u_{m}\right)
$$

$$
<r_{2}+\text { ord }_{\wp}\left(-\frac{b}{a}\left(\frac{\beta}{\alpha}\right)^{m}-1\right)
$$

Now we apply theorem B with $n=2, D=d, \alpha_{1} \approx-b / a$, $\alpha_{2}=\beta / \alpha, b_{1}=1$ and $b_{2}=m$ to conclude that

$$
\begin{aligned}
\operatorname{ord}_{\wp}(- & \left.\frac{b}{a}\left(\frac{\beta}{\alpha}\right)^{m}-1\right) \\
& <c_{3} p^{d}(\log p)^{-1}(\log m)^{+2}
\end{aligned}
$$

Therefore

$$
\operatorname{ord}_{p}\left(B_{1}\right)<c_{4} p^{d}(\log p)^{-1}(\log m)^{2}
$$

Thls inequalliy follows similarly whes $\wp 0$ does not divide $[\beta]$. Consequently, by (4),

$$
\begin{aligned}
& \sum_{p \mid B_{1}} \text { ord }_{p}\left(B_{1}\right) \log p<c_{4} m^{\tau}(\log m)^{2} . \\
& p<m^{K}
\end{aligned}
$$

Similarly

$$
\sum_{\mathrm{p} \| \mathrm{B}_{2} \mathrm{ord}}^{\mathrm{p} \leqslant \mathrm{~m}^{\mathrm{K}}} \boldsymbol{(\mathrm { B } _ { 2 }) \operatorname { l o g } \mathrm { p } < \mathrm { c } _ { 5 } \mathrm { m } ^ { \tau } (\operatorname { l o g } \mathrm { m }) ^ { 2 } .}
$$

Consequently, by (9), we may write

$$
\begin{equation*}
B_{1}=B_{3} \pi_{1}^{x_{1}} \ldots \pi_{s}^{x_{s}}, B_{2}=B_{4} \pi_{1}^{y_{1}} \ldots \pi_{s}^{y_{s}} \tag{10}
\end{equation*}
$$

where $x_{1}, \ldots, w_{s}, y_{1}, \ldots, y_{s}$ are non-negative integers and $B_{3}, B_{4} \boldsymbol{\varepsilon} Z$ with
(11) $\quad \log \max \left(\left|B_{3}\right|,\left|B_{4}\right|\right)<c_{6} m^{\tau}(\log m)^{2}$.

Further we see from (7) that

$$
\log \max \left(\left|B_{1}\right|,\left|B_{2}\right|\right)<c_{q} m
$$

whith, together with (10), implles tbat

$$
\begin{equation*}
\max \left(x_{1}, \ldots, \pi_{s}, y_{1}, \ldots, y_{s}\right)<c_{8} m \tag{12}
\end{equation*}
$$

with $c_{8}>1$.
We bave

$$
\begin{align*}
& u_{m} a_{1}^{-1} a \alpha^{m-n} v_{n} \tag{13}\\
& =-b_{1} \beta^{n}\left(a_{1}^{-1} a \alpha^{m-n}-b_{1}^{-1} b \beta^{m-n}\right)
\end{align*}
$$

and, by (7) and (1),

$$
\begin{equation*}
\Lambda B_{1}-a \alpha^{m}=b \beta^{m} \tag{14}
\end{equation*}
$$

In view of (3), we see that

$$
\begin{equation*}
u_{m}^{-a} l_{1}^{-1} a \alpha^{m-n} v_{n} \neq 0 \tag{15}
\end{equation*}
$$

Put

$$
\begin{aligned}
& T=a_{1}^{-1} a \alpha^{m-n} v_{n} u_{m}^{-1}-1 \\
& T_{1}=a^{-1} \alpha^{-m} \Lambda B_{1}-1
\end{aligned}
$$

By (15) and (14), notice that

$$
\mathrm{TT}_{1} \neq 0
$$

Further it follows from (8) and (10) that

$$
\begin{aligned}
T_{1} & =a_{1}^{-1} \alpha^{-m} \pi_{1}{ }_{1} \ldots \pi_{s}^{x_{s}}\left(B_{3} \Lambda\right)-1 \\
\text { and } T & =\frac{a}{a_{1}} \alpha^{m-n} \pi_{1}^{z_{1}} \ldots \pi_{s}^{z_{B}} \frac{B_{4}}{B_{3}}-1
\end{aligned}
$$

where $z_{i}=y_{i}-x_{i}$ for $1<i<8$ Now we split the proof of theorem 3 ln two cases.
Case I. $|\alpha|>|\beta|$. Dividing both the sides of (13) by u_{m}, we bave

$$
\begin{equation*}
0<\left|\mathbf{T}^{\prime}\right|<c_{9}^{-n}, c_{9}>1 . \tag{!6}
\end{equation*}
$$

We apply theorem ${ }_{i f}$ with
$n=s+3<\varepsilon(\log m)(\log \log m)^{-1}+3$ by (6),
$D=d<2, \quad \log A_{1}=\log A_{2}=c_{10}, \log A_{3}=\ldots=$
$\log A_{n-1}=(\log m)^{A}$ by $(5), \log A_{a}=c_{6} m^{\tau}(\operatorname{lcgm})^{2}$ by (11) and $B=c_{8} m$ by (12) to conclude that

$$
\begin{equation*}
|T|>\exp \left(-\mathrm{m}^{\tau+c_{11} \varepsilon}(\log m)^{5}\right) . \tag{17}
\end{equation*}
$$

We shall choose ε to atisly
(18) $\varepsilon<\left(1-\tau_{)} / 2 c_{11}\right.$.

Put

$$
\tau_{1}=(1+\tau) / 2
$$

Then, slace $0<\tau<1$, we find that $\tau<\tau_{1}<1$.
Comblalng (16), (17) and (18), we bave

$$
\mathrm{n}<\mathrm{c}_{12} \mathrm{~m}^{\tau_{1}}(\log \mathrm{~m})^{5}
$$

Then
(19) $\quad \log |\wedge:<\log | v_{n} \mid<c_{13} m^{\tau_{1}}(\log m)^{5}$.

Dividing both the sides of (14) by a $\alpha^{\mathfrak{m}}$, we have

$$
\begin{equation*}
0<\left|\mathrm{T}_{1}\right|<\mathrm{c}_{14}^{-\mathrm{m}}, \mathrm{c}_{14}>1 \tag{20}
\end{equation*}
$$

We apply theorem A with $n=s+3<\varepsilon(\log m)(\log \log m)^{-1}$ +3 by (6), $D=d<2, \quad \log A_{1}=\log A_{2}=c_{15}$,
$\log A_{3}=\ldots=\log A_{n-1}=(\log m)^{A^{\prime}}$ by (5), $\log A_{n}=2 c_{13}{ }^{m}{ }^{\tau_{1}}$ ($\log \mathrm{m})^{5}$ by (19), (11) and $B=c_{8} m$ by (12) to conclude that

$$
\begin{equation*}
\left|\mathbf{T}_{1}\right|>\exp \left(-m^{\left.\left.\tau_{1}+c_{16} \boldsymbol{\varepsilon}_{(\log m}\right)^{8}\right) .}\right. \tag{21}
\end{equation*}
$$

Les

$$
\varepsilon=\min \left(\frac{1-\tau}{2 c_{11}}, \frac{1-\tau_{1}}{2 c_{16}}, \frac{1}{2}\right)
$$

Then (18) is satisfied. Put

$$
\tau_{2}=\left(1+\tau_{1}\right) / 2
$$

Observe that $\tau_{1}<\tau_{2}<1$. Now we combine (20) and (21) to conclude that

$$
\mathrm{m} \leqslant \mathrm{c}_{17} \mathrm{~m}^{\tau}{ }_{(\log \mathrm{m})^{8}}
$$

which, slace $\tau_{2}<1$, implios that $m<c_{18}$. But this is not possible if $\mathrm{c}_{1}>\mathrm{c}_{18}$.

Case II

$$
|d|=|\beta| \text { Lat } r_{1} \text { and } \tau_{2} \text { be defined as in case } I_{0}
$$

Observe that β is not a unit, slace α / β is not a root of unity. Therefore there exlsts a prime ideal \wp in the ring of integers of $\mathrm{Q}(\alpha)$ such that $\wp /[\beta]$. Further, since the Ideals $[\alpha]$ and $[\beta]$ are relatively coprime, observe that \wp does not divide $[\alpha]$. Consequen!ly ord $\wp_{\rho}\left(\mathrm{u}_{\mathrm{m}}\right)<\mathrm{c}_{19}$. Now, by countlng the power of prime ideal on borh the sides in (13), we have

$$
\mathrm{n}<\mathrm{c}_{20}+\operatorname{ord}_{\rho,}\left(\mathrm{u}_{\infty}\right)+\operatorname{ord}_{\rho}(\mathrm{T})<\mathrm{c}_{21}+\operatorname{ogd}(\mathrm{T}) .
$$

We apply theorem B wlth $p<c_{22}$ and the same parameters as In ease I for obtaining a lower bound for | I | by theorem A. We obtsin

$$
\operatorname{ord}_{\wp}(T)<m^{\tau+c_{23}} \varepsilon_{(\log m)^{5}}
$$

We shall choose $\boldsymbol{\varepsilon}$ to satisfy

$$
\begin{equation*}
\varepsilon<\frac{1-\tau}{2 c_{23}} \tag{22}
\end{equation*}
$$

Then

$$
\mathrm{n}_{1} \mathrm{c}_{24} \mathrm{~m}^{\tau_{1}}(\log m)^{5}
$$

which implies that

$$
\log |\wedge| \leqslant c_{25}{ }^{m^{\tau}}(\log m)^{5}
$$

Counting the power of p ime ideal 8 on both the sides In (14), we obtain

$$
m<c_{26}+\operatorname{ord}_{\wp}\left(T_{1}\right) .
$$

We apply theorem B with $p<c_{22}, \log A_{n}=c_{25}{ }^{\mathrm{m}}{ }^{1}(\log m)^{5}$ and the same parameters as in case I for obtaining a lower bound for $\left|T_{1}\right|$ by theorem A We oblaln

Let

$$
\begin{aligned}
& \operatorname{ord}_{\wp 0}\left(T_{1}\right) \leqslant m^{\tau_{1}}+o_{27} \varepsilon \\
& \varepsilon=\min \left(\frac{1-\tau}{2 c_{23}}, \frac{1-\tau_{1}}{2 c_{27}}, \frac{1}{2}\right)
\end{aligned}
$$

Then (22) is satisfied. We obtain

$$
\mathrm{m}<\mathrm{c}_{28} \mathrm{~m}^{\tau}(\log \mathrm{m})^{8}
$$

Conseque itly $m<c_{29}$ which is not possible if $c_{1}>c_{29}$. Thle completes the proof of theorem 3.

Remarks

(1) Let $\left\{u_{m}\right\}$ be a non-degenerate blary recursive sequence. For every palr m, n with $m>n, u_{m} u_{n} \neq 0$ and $Q\left(u_{m}\right)=Q\left(u_{n}\right)$, we have

$$
m-n>c_{30}(\log m)^{2}(\log \log m)^{-1}
$$

whese $c_{30}>0$ is an e'fectively computable namber dependIng only on the sequence $\left\{u_{m}\right\}$. This follows immediately from theorem 1 and the relation (13) with $\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=\mathrm{b}$.
(ii) Let $\mathrm{P} \geqslant 2$ and denote by S the set of all non-zero Integers composed of primes not exceeding P. We can apply the algument of proof of theorem 1 to prove that for every $x \in S, y \in S$ with $(x, y)=1,|x>|y|$ and $\log | x \mid>e^{e}$,

$$
\log Q(x+y)>c_{31}(\log \log |x|)^{2}(\log \log \log |x|)^{-1}
$$

where $\mathrm{c}_{31}>0$ is an effectively computable number depending oniy on P.

References

1. A. Baker, The theory of linear forms in logarithms, Trenscendence theory: Advances and applications, A. Baker and D.W, Masser ed., Academic Press, London and New York 1977.
2. A. J. van der Poorten, Linear forms in logarithms in the p-adic case, Transcendence theory : Advances and appllcations, A. Baker and Masser ed., Academic Prass, London and New York 1977.
3. T.N. Shorey, Linear forms in members of a binary recursive sequence, Acta. Arith. (to appear).
4. C.L. Stewart, On divisors of terms of Linear recursive sequences, Jour reine angew Math 333 (1982), 12-31.
5. C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lchmer numbers III, Jour. London Matio. Soc. (to appear).

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India.

