Hardy-Ramenujan Journol Vol. 6 (1983) 23 - 36

THE GREATEST SQUARE FREE FACTOR OF A BINARY RECURSIVE SEQUENCE

By T. N. SHOREY

§ 1. For any sequence of integers u₀, u₁,..., u_m,... satisfying

 $u_{m} = r u_{m-1} + s u_{m-2}, m = 2, 3. ...$

where r and s are rational integers with $r^2 + 4s \neq 0$, we have

(1) $u_m = a a a^m + b \beta^m$, m = 0, 1, 2, ...

where d and β are roots of the polynomial $X^2 - r X - s$ and

(2)
$$a = \frac{u_0\beta - u_1}{\beta - d}, b = \frac{u_1 - u_0d}{\beta - d}.$$

The polynomial $X^2 - r X - s$ is called the polynomial associated to the sequence $\{u_m\}$. The sequence $\{u_m\}$ is said to be a non-degenerate binary recursive sequence if a, b, d, β are non-zero and d/β is not a root of unity. For a rational integer π with $|\pi| > 1$, denote by P(x) the greatest prime factor of π and by $Q(\pi)$ the greatest square free factor of π . If p_1, \dots, p_r are all the distinct primes dividing π , then $Q(\pi) = p_1 \dots p_r$. For non-zero rational integers π and y, denote by $[\pi, y]$ and (x, y), respectively, the least common multiple and the greatest common divisor of x and y. Further we define P(1) = P(-1) = 1 and

$$P\left(\frac{x}{y}\right) = P\left(\frac{x}{(x, y)}, \frac{y}{(x, y)}\right) = P\left(\frac{[x, y]}{(x, y)}\right)$$

and

$$\widehat{\mathbb{D}}\left(\frac{x}{y}\right) = \mathbb{Q}\left(\frac{[x, y]}{(x, y)}\right)$$

Let { u } be a non-degenerate binary recursive sequence given by (1). Stewart [4] proved that

$$Q(u_{m}) > C\left(\frac{m}{((\log m)^{2}}\right)^{1/d}, m > C',$$

where d = [Q(d):Q] and C > 0, C' > 0 are effectively computable numbers depending only on a and b. Observe that d = 1 or 2. Further, if $|d| > |\beta|$, Stewart [4] proved that for any θ with $0 < \theta < 1$,

$$Q(u_m) > m^{\theta}, m > C'',$$

where C'' > 0 is an effectively computable number depending only on 0 and the sequence $\{u_m\}$. We shall generalise and strengthen this result as follows:

Theorem 1

Let $\{u_m\}$ be a non-degenerate binary recursive sequence. There exist effectively computable numbers $C_1 > 0$ and $C_2 > 0$ depending only on the sequence $\{u_m\}$ such that for every $m > C_1$, we have

$$\log Q (\mathbf{u}_{\mathbf{m}}) > C_2 (\log \mathbf{m})^2 (\log \log \mathbf{m})^{-1}.$$

The improvement depends on utilising the fact that the contribution from small primes in u is small. Stewart [5] proved theorem 1 for the greatest square free factor of the members of Lucas and Lehmer sequences. Further, for Lucas and Lehmer sequences, Stewart [5] proved that for almost all m

$$\log Q(u_m) > (\log m)^{2 + \log 2 - \varepsilon}, \varepsilon > 0.$$

Theorem 1 is contained in the following result.

24

Theorem 2

Let $\{u_m\}$ be a non-degenerate binary recursive sequence. There exist effectively computable numbers $C_3 > 0$ and $C_4 > 0$ depending only on the sequence $\{u_m\}$ such that for every pair m, n with m > n, $m > C_3$ and $u_n \neq 0$, we have

$$\log Q (\Delta'_{m, n}) > C_4 (\log m)^2 (\log \log m)^{-1}$$

where

$$\Delta'_{\mathbf{m},\mathbf{n}} = [\mathbf{u}_{\mathbf{m}},\mathbf{u}_{\mathbf{n}}] / (\mathbf{u}_{\mathbf{m}},\mathbf{u}_{\mathbf{n}}).$$

For a non-degenerate binary recursive sequence $\{u_m\}$, observe that the equation $u_m = 0$ implies that m is bounded by an effectively computable number depending only on the sequence $\{u_m\}$. We apply theorem 2 with the least integer n (n is either 0 or 1) such that $u_n \neq 0$ to obtain theorem 1. For estimates on P (u_m) and P (Δ'_m, n) , we refer to Stewart [4] and the author [3]. See also the next theorem.

Let $\{u_m\}$ and $\{v_m\}$ be non-degenerate binary recursive sequences whose associated polynomials are identically equal. Denote by \mathcal{A} and β the roots of their associated polynomial. Then the sequence $\{u_m\}$ is given by (1) and (2). Further for m = 0, 1, 2, ..., we have

$$\mathbf{v}_{\mathbf{m}} = \mathbf{a}_{1} \boldsymbol{\lambda}^{\mathbf{m}} + \mathbf{b}_{1} \boldsymbol{\beta}^{\mathbf{m}}$$

where

$$a_1 = \frac{v_0\beta - v_1}{\beta - d}$$
, $b_1 = \frac{v_1 - v_0d}{\beta - d}$.

For m and n with $u_m v_n \neq 0$, put

$$\Delta_{\mathbf{m},\mathbf{n}} = [\mathbf{u}, \mathbf{v}] / (\mathbf{u}, \mathbf{v})$$

Then theorem 2 is a particular case of the following result. Theorem 3

Let A > 0 and $0 < K < (d+1)^{-1}$ where d = [Q(d):Q]There exist effectively computable numbers $C_5 > 0$ and $C_6 > 0$ depending only on A, K, the sequences $\{u_m\}$ and $\{v_m\}$ such that for every pair m, n with m > n, $m > C_5$, $v_n \neq 0$ and

(3)
$$\frac{\mathbf{a} \mathbf{d}^{\mathbf{m}}}{\mathbf{a}_{1} \mathbf{d}^{\mathbf{n}}} \neq \frac{\mathbf{b} \mathbf{\beta}^{\mathbf{m}}}{\mathbf{b}_{1} \mathbf{\beta}^{\mathbf{n}}},$$

either

$$\log P (A_{m, n}) > (\log m)^{A}$$

or

$$\sum_{\substack{\mathbf{p} \mid \Delta_{\mathbf{m}, \mathbf{n}} \\ \mathbf{p} > \mathbf{m}^{\mathbf{K}}}} 1 > \mathbf{C}_{6} \frac{\log \mathbf{m}}{\log \log \mathbf{m}}$$

where p runs through primes

For the proof of theorem 2, we may assume $\log P(\Delta'_{m,n}) < (\log m)^2$. Then we apply theorem 3 with $\{u_m\} = \{v_m\}, A = 2$ and $K = \frac{1}{4}$ Observe that (3) is satisfied, since $d\beta$ is not a root of unity. Now the assertion of theorem 2 follows immediately.

The proof of theorem 3 depends on the theory of linear forms in logarithms. Let $d_1, ..., d_n$ be non-zero algebraic numbers Let K be their splitting field over Q.Put D = [K:Q] We denote by $A_1, ..., A_n$ upper bounds for the heights of $d_1, ..., d_n$ respectively, where we assume that $A_j > 3$ for $1 \le j \le n$. Write n-1

$$\Omega' = \frac{\pi}{j=1} \log A_j, \ \Omega = \Omega' \log A_n.$$

The proof of theorem 3 depends on the following theorem of Baker [1] on linear forms in logarithms.

Theorem A.

There exist effectively computable absolute constants $C_7 > 0$ and $C_8 > 0$ such that the inequalities

$$0 < \| \mathbf{a}_{1}^{\mathbf{b}_{1}} \dots \mathbf{a}_{n}^{\mathbf{b}_{n}} - \| \le \sum_{\substack{\mathbf{c} \in \mathbb{C}_{7}^{n} D \\ \text{exp}}}^{\mathbf{C}_{8}^{n}} \Omega \log \Omega' \log B}$$

have no solution in rational integers $b_1, ..., b_n$ with absolute values at most **B** (> 2).

We shall also need a p-adic analogue, due to van der Poorten [2], of theorem A.

Theorem B.

Let \otimes be a prime ideal of K lying above a rational prime p. There exist effectively computable absolute constants $C_9 > 0$ and $C_{10} > 0$ such that the inequalities

$$\infty > \operatorname{ord}_{g_{0}}(a_{1}^{b_{1}} \dots a_{n}^{b_{n}} - 1) > (C_{g} nD)^{C_{10}n} \frac{p^{D}}{\log p} \Omega (\log B)^{2}$$

have no solution in rational integers $b_1, ..., b_n$ with absolute values at most B(> 2).

§ 2. Proof of theorem 3.

(4) Let
$$A > 0$$
 and $0 < K < (d+1)^{-1}$. Put
 $\tau = K (d+1)$.

Observe that $0 < \tau < 1$. Let $\{u_m\}$ and $\{v_m\}$ be as in

theroem 3. There is no loss of generality in assuming that $|\mathcal{A}| \ge |\beta|$. Then, since \mathcal{A}/β is not a root of unity, we find that $|\mathcal{A}| > 1$. For algebraic integer $\pi \in Q$ (\mathcal{A}), denote by [**n**] the ideal generated by π in the ring of integers of $Q(\mathcal{A})$. There exists a positive rational integer k such that

$$([a^2], [\beta^2]) = [k].$$

Put $d_1 = d^2/k$ and $\beta_1 = \beta^2/k$. Then the ideals $[d_1]$ and $[\beta_1]$ are relatively coprime. For m = 0, 1, 2, ..., notice that

$$U_{\mathbf{m}} = \mathbf{k}^{-\mathbf{m}} \mathbf{u}_{2\mathbf{m}} = \mathbf{e} \mathbf{d}_{1}^{\mathbf{m}} + \mathbf{b} \beta_{1}^{\mathbf{m}},$$

$$U'_{\mathbf{m}} = \mathbf{k}^{-\mathbf{m}} \mathbf{u}_{2\mathbf{m}+1} = \mathbf{e} \mathbf{d} \mathbf{d}_{1}^{\mathbf{m}} + \mathbf{b} \beta \beta_{1}^{\mathbf{m}},$$

$$V_{\mathbf{m}} = \mathbf{k}^{-\mathbf{m}} \mathbf{v}_{2\mathbf{m}} = \mathbf{a}_{1} \mathbf{d}_{1}^{\mathbf{m}} + \mathbf{b}_{1} \beta_{1}^{\mathbf{m}},$$

$$V'_{\mathbf{m}} = \mathbf{k}^{-\mathbf{m}} \mathbf{v}_{2\mathbf{m}+1} = \mathbf{a}_{1} \mathbf{d} \mathbf{d}_{1}^{\mathbf{m}} + \mathbf{b}_{1} \beta \beta_{1}^{\mathbf{m}}.$$

Observe that the sequences $\{U_m\}, \{U'_m\}, \{V_m\}$ and $\{V'_m\}$ are non-degenerate binary recursive sequences. By proving the theorem separately for sequences $\{U_m\}$ and $\{V_m\}, \{U_m\}$ and $\{V'_m\}, \{U'_m\}$ and $\{V'_m\}$, there is no loss of generality in assuming that $([el], [\beta]) = [1]$.

Denote by c_1, c_2, \dots effectively computable positive numbers depending only on A, K, the sequences $\{u_m\}$ and $\{v_m\}$. We may assume that $m > c_1$ with c_1 sufficiently large. Then, since $\{u_m\}$ is non-degenerate, we see that $u_m \neq 0$, Let 0 < n < m satisfy $v_n \neq 0$ and suppose that (3) /s valid. We suppose

(5)
$$\log P(\Delta_{m,n}) < (\log m)^A$$
.

Let $\pi_1, ..., \pi_s$ be all the rational primes satisfying $\pi_i | \Delta_{m,n}$ and $\pi_i > m^K$ for 1 < i < s. Let $0 < \mathfrak{E} < 1$. We suppose that

(6)
$$s < + \varepsilon$$
 (leg m) (log log m)⁻¹.

We shall arrive at a contradiction for a suitable choice of $\boldsymbol{\epsilon}$ depending only on A, K the sequences $\{\boldsymbol{u}_m\}$ and $\{\boldsymbol{v}_m\}$.

We write

(7)
$$B_1 = \frac{u_m}{(u_m, v_n)}, B_2 = \frac{v_n}{(u_m, v_n)}, A - (u_m, v_n).$$

Then

(8)
$$\frac{u_m}{v_n} = \frac{B_1}{B_2}$$
 and $(B_1, B_2) = 1$.

Further

 $(9) \qquad \Delta_{\mathbf{m},\mathbf{n}} = \pm \mathbf{B}_1 \ \mathbf{B}_2.$

For a prime p dividing B_1 , we see from (7) that

$$\operatorname{ord}_p(B_1) < \operatorname{ord}_p(u_m).$$

Let & be a prime ideal in the ring of integers of Q (d) dividing p. Then, since the ideals [d] and [β] are relatively prime, either & does not divide [d] or & does not divide [β]. For simplicity assume that & does not divide [d]. Then, by (1), we have

ord_p(u_m) < ord_g(u_m)
< c₂ + ord_g
$$\left(- \frac{b}{a} \left(\frac{\beta}{d} \right)^m - 1 \right)$$
.
Now we apply theorem B with n = 2, D = d, $d_1 = -b/a$,
 $d_2 = \beta/d$, $b_1 = 1$ and $b_2 = m$ to conclude that
ord₁ $\left(- \frac{b}{b} \left(\frac{\beta}{d} \right)^m - 1 \right)$

ord₈₀
$$\left(-\frac{b}{a}\left(\frac{\beta}{d}\right)^{-}-1\right)$$

< $c_3 p^d (\log p)^{-1} (\log m)^{+2}$.

Therefore

d2 =

 $\operatorname{ord}_{p}(B_{1}) < c_{4} p^{d} (\log p)^{-1} (\log m)^{2}.$

This inequality follows similarly when \mathcal{D} does not divide [β]. Consequently, by (4),

$$\sum_{\substack{p \mid B_1 \\ p \leq m^K}} \operatorname{ord}_p(B_1) \log p \leq e_4 m^{\tau} (\log m)^2.$$

Similarly

$$\sum_{\substack{\mathbf{p} \mid \mathbf{B}_{2} \\ \mathbf{p} \leq \mathbf{m}^{K}}} \operatorname{ord}_{\mathbf{p}} \langle \mathbf{B}_{2} \rangle \log \mathbf{p} < c_{5} \operatorname{m}^{\tau} (\log \mathbf{m})^{2}.$$

Consequently, by (9), we may write

(10)
$$B_1 = B_3 \pi_1^{x_1} \dots \pi_s^{x_s}, B_2 = B_4 \pi_1^{y_1} \dots \pi_s^{y_s}$$

where $x_1, ..., x_s, y_1, ..., y_s$ are non-negative integers and B3. B4 & Z with

 $\log \max \left(| B_3|, | B_4| \right) < c_6 m^{\tau} \left(\log m \right)^2.$ (11)

Further we see from (7) that $\log \max(|B_1|, |B_0|) < c_m$ which, together with (10), implies that mex (x₁, ..., **x**_s, y₁, ..., y_n) < c₈m (12)with $c_g > 1$. We have u a ad v (13)= $-b_1\beta^{0}(a_1^{-1}ad^{m-n}-b_1^{-1}b\beta^{m-n})$ and, by (7) and (1), $\Lambda B_1 - ad^m = b \beta^m$ (14)In view of (3), we see that $u_m - a_1^{-1} a d^{m-n} v_n \neq 0.$ (15)Put $T = a_1^{-1} a_2 d^{m-n} v_n u_m^{-1} - 1,$ $\mathbf{T}_1 = \mathbf{a}^{-1} \mathbf{d}^{-m} \Lambda \mathbf{B}_1 - \mathbf{1},$ By (15) and (14), notice that $\mathbf{TT}_{1} \neq 0.$ Further it follows from (8) and (10) that $T_1 = a_1^{-1} d^{-m} \pi_1^{\pi_1} \cdots \pi_s^{\pi_s} (B_3 \Lambda) - 1$ and $\mathbf{T} = \frac{\mathbf{a}}{a_1} \mathbf{a} - \frac{\mathbf{m} - \mathbf{n}}{1} \frac{\mathbf{z}_1}{\mathbf{n}} \frac{\mathbf{z}_3}{\mathbf{B}_0} \frac{\mathbf{B}_4}{\mathbf{B}_0} - 1$ where $z_i = y_i - x_i$ for $1 \le i \le 8$ Now we split the proof of theorem 3 in two cases. $|\mathcal{L}| > |\beta|$. Dividing both the sides of (13) by Case I. u,, we have

(16)
$$0 < |T| < c_9^{-n}, c_9 > 1.$$

We apply theorem_j with
 $n = s+3 < \varepsilon$ (log m) (log log m)⁻¹ + 3 by (6),
 $D = d < 2$, $\log A_1 = \log A_2 = c_{10}, \log A_3 = ... =$
 $\log A_{n-1} = (\log m)^A$ by (5), $\log A_n = c_6 m^T (\log m)^2$ by (11)
and $B = c_8 m$ by (12) to conclude that
(17) $|T| > \exp((-m^{T+c}11^{\varepsilon}(\log m)^5).$
We shall choose ε to satisfy
(18) $\varepsilon < (1-\tau)/2 c_{11}$.
Put
 $\tau_1 = (1 + \tau)/2.$
Then, since $0 < \tau < 1$, we find that $\tau < \tau_1 < 1$.
Combining (16), (17) and (18), we have
 $n < c_{12} m^{\tau_1} (\log m)^5.$
Then
(19) $\log |A| < \log |v_n| < c_{13} m^{\tau_1} (\log m)^5.$
Dividing both the sides of (14) by a d^m , we have
(20) $0 < |T_1| < c_{14}^{-m}, c_{14} > 1.$
We apply theorem A with $n = s + 3 < \varepsilon$ (log m) (log log m)⁻¹
 $+ 3$ by (6), $D = d < 2$, $\log A_1 = \log A_2 = c_{15}$,
 $\log A_3 = ... = \log A_{n-1} = (\log m)^A$ by (5), $\log A_n = 2c_{13} m^{\tau_1}$
(log m)⁵ by (19), (11) and B = $c_8 m$ by (12) to conclude that

(21)
$$|\mathbf{T}_1| > \exp(-\mathbf{m}^{\tau_1 + c_{16} \varepsilon} (\log m)^8).$$

Let

$$\mathbf{\varepsilon} = \min\left(\frac{1-\tau}{2c_{11}}, \frac{1-\tau_1}{2c_{16}}, \frac{1}{2}\right)$$

Then (18) is satisfied. Put

$$\boldsymbol{\tau}_{\mathbf{2}} = (\mathbf{1} + \boldsymbol{\tau}_{\mathbf{1}}) / 2.$$

Observe that $\tau_1 < \tau_2 < 1$. Now we combine (20) and (21) to conclude that

$$\mathbf{m} \leq \mathbf{c}_{17} \mathbf{m}^{\tau_2} (\log \mathbf{m})^8$$

which, since $\tau_2 < 1$, implies that $m < c_{18}$. But this is not possible if $c_1 > c_{18}$.

Case II

 $|\mathcal{L}| = |\beta|. \text{ Let } \tau_1 \text{ and } \tau_2 \text{ be defined as in case I.}$ Observe that β is not a unit, since \mathcal{L}/β is not a root of unity. Therefore there exists a prime ideal \emptyset in the ring of integers of Q (\mathcal{L}) such that $\emptyset / [\beta]$. Further, since the ideals [\mathcal{L}] and [β] are relatively coprime, observe that \emptyset does not divide [\mathcal{L}]. Consequently ord \emptyset (u_m) < c₁₉. Now, by counting the power

of prime ideal \mathcal{D} on both the sides in (13), we have

$$\mathbf{n} < \mathbf{c}_{20} + \operatorname{ord}_{\mathcal{G}} (\mathbf{u}_{\mathbf{m}}) + \operatorname{ord}_{\mathcal{G}} (\mathbf{T}) < \mathbf{c}_{21} + \operatorname{ord}_{\mathcal{G}} (\mathbf{T}).$$

We apply theorem B with $p < c_{22}$ and the same parameters

as in case I for obtaining a lower bound for | T | by theorem A. We obtain

$$\operatorname{ord}_{g}(\mathbf{T}) < \mathbf{m}^{\tau + c_{23} \varepsilon} (\log m)^{5}.$$

(22) $\varepsilon < \frac{1}{2c}$

Then

$$n < c_{24} m^{\tau} (\log m)^5$$

which implies that

$$\log | \wedge | < c_{25} m^{\tau_1} (\log m)^5.$$

Counting the power of p-ime ideal \otimes on both the sides in (14), we obtain

$$\mathbf{m} \leq \mathbf{c}_{26} + \operatorname{ord}_{\mathcal{B}}(\mathbf{T}_1).$$

We apply theorem B with $p < c_{22}$, $\log A_n = c_{25} m^1 (\log m)^5$ and the same parameters as in case I for obtaining a lower bound for $|T_1|$ by theorem A We obtain

Let
$$\mathfrak{E} = \min\left(\frac{1-\tau}{2c_{23}}, \frac{1-\tau_1}{2c_{27}}, \frac{1}{2}\right)$$

Then (22) is satisfied. We obtain

$$\mathbf{m} < \mathbf{c}_{28} \mathbf{m}^{\tau_2} (\log \mathbf{m})^8.$$

Consequently $m < c_{29}$ which is not possible if $c_1 > c_{29}$. This completes the proof of theorem 3.

Remarks

(i) Let $\{u_m\}$ be a non-degenerate bisary recursive sequence. For every pair m, n with m > n, $u_m u_n \neq 0$ and $Q(u_m) = Q(u_n)$, we have

$$m - n > c_{30} (\log m)^2 (\log \log m)^{-1}$$

where $c_{30} > 0$ is an effectively computable number depending only on the sequence { u_m }. This follows immediately from theorem 1 and the relation (13) with $a_1 = a$, $b_1 = b$.

(ii) Let $P \ge 2$ and denote by S the set of all non-zero integers composed of primes not exceeding P. We can apply the argument of proof of theorem 1 to prove that for every

$$x \in S, y \in S$$
 with $(x,y) = 1$, $|x| > |y|$ and $\log |x| > e^{e}$,

$$\log Q(x+y) \ge c_{31} (\log \log |x|)^2 (\log \log \log |x|)^{-1}$$

where $c_{31} > 0$ is an effectively computable number depending only on P.

35

References

- A. Baker, The theory of linear forms in logarithms, Wranscendence theory: Advances and applications, A. Baker and D.W., Masser ed., Academic Press, London and New York 1977.
- 2. A. J. van der Poorten, Linear forms in logarithms in the p-adic case, Transcendence theory: Advances and applications, A. Baker and Masser ed., Academic Press, London and New York 1977.
- 3. T.N. Shorey, Linear forms in members of a binary recursive sequence, Acta. Arith. (to appear).
- 4. C.L. Stewart, On divisors of terms of Linear recursive sequences, Jour. reine angew Math 333 (1982), 12-31.
- 5. C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lchmer numbers III, Jour. London Math. Soc. (to appear).

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005 India.