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THE GREATEST SQUARE FREE FACTOR OF
A BINARY RECURSIVE SEQUENCE
By T.N. SHOREY

§ 1. For any sequence of Integers Uy Bysees U

satisfying

nm = rum_1 +sum_2.m =20 3 ave

where r and s are ratlonal integers with rﬁl + 48 # 0, we
have

M u = 8™ + b8®, m=0,1,2,..

where ol and 3 are reots of the polynomial xz—r X~s end
uOB = Wy ) u - uogl
B~ *7 7  B-d

The polynomial Xz—r X-8 1Is called the polynomlal
associated to the sequence {um } . The sequesce {um} is

said to be a non-dcgenerate binary recursive sequence if
8, b, o, B are non-zero and ol/B is not a root of unity. For
8 raticnal integer x with | x| > 1, denote by P(x) the
greatest prime factor of x and by Q(x) the greatest square free
factor of x. If Pys-sP, B1€ all the distinct primes dividing x,

2) a=

then Q(x) = Py - P, For non-zero ratiomal integers x and

¥y, denote by [x, y] and (x, y), respectively, the least common
multiple and the greatest commoa divisor of x and y. Further
we define P(1) = P(—1) = 1 and

P(_;)‘P (x,y)(-.y)) (gﬁ

9(3)-2lew)

and
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Let { u } be a non-degenerate binary recursive sequence

glven by (1): Stewa:t [4] proved that
m 1/d
Q(um)>C(((logm)2 ) m>C, '
where d = [Q () :'Q] and C > 0, C’ > 0 are effectively
computable numbers depending only on a and b. Observe

that d = 1 or 2. Further,if 1l 1> | B, Stewart [§] proved
that forany@ with0 <@ < 1,

)

Q(u ) >m .m’> <’

where C” > 0 is ap effectively computable number depending
only on @ and the sequence { u } . We shall generalise and

strengthen this result as follows :

Theorem 1
Let { u } be anon-degenerate binary recursive sequence.,

There exist effectively computable numbers C1> 0 and C2 >0
depending only on the sequence { v } such that for every

m> C1 , we have

log Q (um)> C, (log m)2 (log log m) b

The improvemeat depends on utilising the fact that the
contribution from small primes in o is small. Stewart [5]

proved theorem 1 for the grestest sqoare free factor of the
members of Lucas and Lehmer sequences. Further, for Lucas
and Lehmer sequences, Stewart [5] proved that for almoestall m

2+log2—€

| l'og Q (u Y>(log m) € >0

Theorer 1 1s contained in the following result.
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Theorem 2
Let { L } be a non-degenerate binary recursive sequence.
There exist effectively computable numbers C3>0 and C 4>0

depending only on the sequence { v } such that for every palr

m,nwithm >n, m > C3 andun # 0, we haye

log Q QA'm' n) > C, (log tn)2 (log log m) i
where
A'm. a = [um. un]/ (um, un).
For a non-degenerate binary recurslve sequence { u ks
observe that the equation 8, = 0 implies that m is bounded

by an effectively computable number depending only o the
sequence { o } . We apply theorem 2 with the least integer

n (p is either 0 or 1) such that u # 0 to obtvain theorem 1.
For estimates on P (um) and P (A - n), we refer to

Stewart [4] and the author [3]. See also the next theorem,

Let { u } and { V. } be non-degenerate binary recarsive

sequences whose associated polynomials are identically equal.
Denote by of and B the roots of their asscciated polynomial.
Then tte sequence { u } is given by (1) aud (2). PFurther

form = 0,1, 2, ..., we have
m m
Vm = ald + bIB
where
Yo - vy Ve =g

N B o e
RS Do i Sy Fray
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For m and n with g% # 0, put

Am. 0 L Vn]/(um- .Vn)'
Then theorem 2 is a particular case of the following result.

Theorem 3

LetA >0and 0 < K < (d+1) "} whered = [Q(dl) : Q]
There exist effectively computable numbers 05 > 0 and C6 >0
depending only on A, K, the sequences { U }and { % } such

that for every pair m, n withm > n, m > C5, L # 0 and

m m
b
8d y B,

3) ]
8, gln b1 Bn

either
log P ) lo m)A
ogP (A ) > (log

‘or

z c log m
126 log log m
Plan, o

, p> mK
where p runs through primes
For the proof of tbeorem 2, we may assume
log P (A'm, n) < (logm)z. Then we apply theorem 3 with
{um} ={vm}, A =2 and K =] Observe that (3) is

satisfied, s'nce /3 is not a root of unity. Now the assertion
of theorem 2 follows immediately.

The proof of theorem 3 depeads on the theory of linear
forms in logarithms. Let .[1 sy g[n be pon-zero algebraic

numb:rs Lst K b their splitting field over Q.Put D = [K:Q]
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We denote by Al peeey An upper bounds for the heights of
,,[1,..4,.[11 respectively, where we assume that Aj > 3

for 1 < j < n. Write

n—1
Q= *® log A. ,Q=0"log A_.
j=1 J n

The proof of theorem 3 depends on the following theorem of
Baker [1] on linear forms in logarithms.

Theorem A .

There exist effectively computable absolute constants
C7 > 0 and CS > 0 such that the inequalities

b1 bn

0<|‘{1 el T — 1<

)
Csn
exp (- (C7nD) Q log OO’ log B)
have no solution in rational integers b1 i bn with absolute
values at most B (3> 2) .
We shall also need a p-adic analogue, due to van der
Poorten [2], of theorem A.

Theorem B.
Let  be a prime ideal of K lying above a rational prime p.
There exist effectively computable absolute constants 09 >0

and C10 > 0 such that the Inequalities
b b

1 n
® > °'dgo("'1 e ol -1) >
. C,,.n D
(C9 nD) L N Q (log B)2
log p

have no solution in rational integers bl""’ bn wlih absolute

values at most B(> 2).
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§ 2. Proof of theorem 3.
LetA>0and0 <K< (d+1)” 1. Pat
4) o t =K (d+1).
Observe that 0 < t < 1. Let {u_} and {v_} be es in
m m

theroem 3. There Is no loss of generality in assuming that
lel | 218 1. Then,since o/ is not a root of unity, we find
that | ol | > 1. For algebraic integer # € Q (o), denote by
[x] the ideal generated by x in the rirg of integers of Q(dl).
There exists a positive rational integer k sach that

| (L, 1871 = [K1.
Pat 41 = dzlk and 51 = lek. Then the ldealg [.{1] snd

’ [81] are relatively coprime. For m = 0,1,2,..., notlce that

U, = k‘mugmsaa'l“mﬁ'l”,

UL =k Tugn = edd] + b8BT,
Vo = kK v2m=a1"‘11n+bxﬁin,

Vi = & vgy g =agldy +b, B BT

Observe that the sequences {Um}, {Um }, {Vm} and
{ V'm } are non-degenerate binary recursive sequences. By
proving the theorem separately for sequences {Um} and
{Vp b (UpYand {V'}, {0 band {V_}, (U}
and { V'm }, there is no loss of generality in assuming that
( [o1. [B]) = [11.

Denote by CyrCqr oo effectively computable positive

numbers depending only on A, K, the sequences { v } and
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{v }. We may assume that m > ¢ with ¢, sufficiently
m 1 1
large. Then, since {um} is non-degenerate, we see that
uy # 0, Let 0 < n < m satisfy Y # 0 and suppose that (3)
is valid. We suppose

; A
(5 leg P Y(Am.n) < (logm) .

Let %, ...y ‘Rs be all the rational primes satlsfying K‘ Am,n

K
and x> m for 1<i<s. Let 0 < € < 1. We suppose that

(6) s < + € (leg m) (log log m)-l.

We shall arrive at a contradiction for a suitable choice of €
dependisg only on A, K the se quences { um } and { vm I
We write

MR Gy T Gy

¥hen
8 — - B
(8) v = and ( 1+ Bg) = L.

Further

® Am,n = =& B1 By.

For a prime p dividing B1' we see from (7) that
urdp (Bl) < ordp (um).

Let ©® bea prime ideal in the ring of integers of Q (o)
dividing p. Then, since the ideals [o] and [B] are relatively
prime, either § does not divide [ol] or § does not divide [B].
For simplicity assume that § dots oot divide [ol]. Then, by
(1), we have
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ordp(um) < ord go(um)

<y raa (- 2(£)-0).

New we apply theorem B with n = 2, D = d, oll = —-b/a,

oly = Blol,b; =1andb, = mto cenclude that

ordga - d ) -1 )
<c3p (log p)~ (log m)“‘2

Therefore
ord (B,) < ¢ log p) I (log m)
p ] 4 p \ 8 p g o

This inequality follows simjlarly wher § does not divide [3].
Consequently, by (4) ,

z ord (Bl) logp < c4 m® (log mlz.
pB, P

K
p<m

Similarly

> g
cardp (B23 logp < Cg m (legm)”.

PIB2
p<mK
Consequently, by (9), we may write
® x y y
. _ 1 S 1 s
(10) By =Bg®y By =B, %, .

where LT WS OY e ¥ BIE pon—-pegative integers and

B3' B, € Z with

(1) log max {( | B3 T ] B4 1) < cﬁmt(log m)a.



THE GREATEST SQUARE FREE FACTOR OF A BINARY 31
RECURSIVE SEQUENCE

Further we see from (7) that
logmex (|B; |, By 1) <c,m
which, together with (10), implies that

(12) mex (xl, wony "s’ ATRE y') < cgm
with cg > 1.
We bave
—1 m-n
(13) u, 8y ael Ve
s -1 m-—n -1 m-n
=°b13 (a1 ad —b1 b8 )
aod, by (7) and (1),
(14) AB-ad™ = b 8"
In view of (3), we see that
-1 m-p
(35) um-al acl vn # 0,
Put i i
- m-n =
T = 31 a ol vn um -1,
-1 -m
'l‘1 = a o A B1 -1,
By (15) and (14), notice that
TT1 #= 0.

Further it follows from (8) and (10) ¢hat
x X
-1 -m 1

9
'I‘1 =8 ol ~, 'Rs (B3A) -1
iT 8 m—n“zl "zlit y
an = al oL 1 5 B3

where z, =y, — % for1 < i< s Now we split the proof

of theorem 3 iIn two cases. .
Casel. | |> 1. Dividing both the sides of (13) by
Um. we have
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-0
(16) 0<l'l'l<c9 .c9>l.
We apply |heoremﬂwith
n =8+3< € (logm) (loglog m)_1 + 3 by (6),
D=d<2, log Alzlog A2=010, log Ag =...=

log An - (log m)A by (5), log A. =c6mr (leg m)zby (1)
and B s cgro by (12) to conclude that

(17) IT| > exp ( —m“-+cll8 (log m)5).
We shall choose € to satisly
(18) E<(l-1)2 49 -

Put
T1 = (1 + T)Iz

Then, silnce 0 < T < 1, we find that T < 1'1 <1,
Combining (16), (17) and (18), we bave
T
1 5
1<c,m (log m) .

Then
7

1 5
(19) log | /\ ! <log) o | < c g (log m) ",

Dividing both the sides of (14) by a .{m, we have

m
200 0O <lTll<c:14= 0y > 1.
We apply theorem A with n=s+3< & (log m) (log log m)~1
+3 by (6)) D=d <2 Ilog Al - log A2=.= C5

%

A
log A =-...=logAn_l=(logm) by (5), logAn=2c13m

3
(log m)5 by (19), (11) and B = cgm by (12) to conclude that
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Ty +C . €
1 6 8
21) | 'l‘1 | > exp (—m (log m) ).

Let

Then (18) Is satistied, Put
= )
Ty = (1 +71)/_.

Observe thal LIRS T,< 1. Now we combine (20) asd (21) to

conclude that
-
2 8
m s c;;m (log m)

which, slace 7 < 1, implies that m < clé. But this {s not

2
possible if €, > g

Case 11

lol{ = 181. LetT, and Tq be defined as in case I,

Obse:ve that B is not a unit, since /3 is not a root of unity,
Therefore there exlsts a prime 1deal § in the ring of integers
of Q (o) such that & / [B]. Further, since the ideals [o{] and
[B] are relatively coprime, observe that O does not divide [o].
Consequently ord@ (um ) < clg-Now, by caounting the power

of prime ideal \* on both the sides in (13), we have

D < eyt ord&) (uy ) tord () <cy + or%(l’).

§
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We apply theorem Bwithp < o9 and the same parameters

as In case I for obtaininga lower bound for | [ | by theorem A.
We obtain

T + Cyq€
°rdgo M<m 23 (log m)5 .
We shall choose € to satisfy
) 1—-7
(22) €<
2 Cog
Then
T

‘ 1 5
n<cy, m (log m) »~
which implies that
Ty 5
logl/\|<cz5m (logm) .

Counting the power of p-lme ideal § on both the sides
in (14), we obtain

<y + °'dgo (Tl"
1 5
We apply theorem B with p < Co9° log Anzsczs m (log m)
and the same parameters as in case 1 for obtalning a lower
bound for ll’ll by tasorem A We obtain

T, + 05n &
o,y <m T gogmy”,

‘ 1—7 1—’1'1 1 i
Let € = min 2c. 2c2 » 9

23 7
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Then (22) s satisfied. We obtain
T
2 8
m < Cye M (log m) .

Consequeitly m < Cyq Which Is not possible Ifc, > cyg.
This completes the proof of theerem 3.
Remarks

(1) Let {um } be a non-degenerate Dblsary recursive
sequence. For every palr m, n withm > n, um u # 0 and

Q (“m )=0Q (un\, we have

m - n3>cg, (log m)2 (log log m)_l

whese ¢, > 0 is an effectively computable nomber depend-

30

ing only op the sequence u }. This follows immediately

from theorem 1 aad the relation (13) with a; = a, bl = b.
(i) LetP > 2and denote by S the set of all non-zero

integers composed of primes not exceeding P. We can apply
the aigument of proof of theorem 1 to prove that for every

X € 8§,y € Swith (x,y; =1, |x. >yl and log |x' > e’

logQix+y) > cq, (log log |x|)2 (log log log |x]) =k

where 3, > 0is an effectively computable number

depending only on P.
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