Volume 14 - 1991


1. Proof of some conjectures on the mean-value of Titchmarsh series-II

R Balasubramanian ; K Ramachandra.
In this paper, we give lower bounds for $\int_0^H \vert F(it)\vert^k\,dt$, where $k=1$ or $2$ and $F(s)$ is a Dirichlet series of a certain kind. Since the conditions on $F(s)$ are relaxed, the bounds are somewhat smaller than those obtained previously.

2. On the zeros of a class of generalised Dirichlet series-VIII

R Balasubramanian ; K Ramachandra.
In an earlier paper (Part VII, with the same title as the present paper) we proved results on the lower bound for the number of zeros of generalised Dirichlet series $F(s)= \sum_{n=1}^{\infty} a_n\lambda^{-s}_n$ in regions of the type $\sigma\geq\frac{1}{2}-c/\log\log T$. In the present paper, the assumptions on the function $F(s)$ are more restrictive but the conclusions about the zeros are stronger in two respects: the lower bound for $\sigma$ can be taken closer to $\frac{1}{2}-C(\log\log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}$ and the lower bound for the number of zeros is something like $T/\log\log T$ instead of the earlier bound $>\!\!\!>T^{1-\varepsilon}$.

3. On the zeros of a class of generalised Dirichlet series-IX

R Balasubramanian ; K Ramachandra.
In the present paper, the assumptions on the function $F(s)$ are more restrictive but the conclusions about the zeros are stronger in two respects: the lower bound for $\sigma$ can be taken closer to $\frac{1}{2}-C(\log\log T)(\log T)^{-1}$ and the lower bound for the number of zeros is like $T/\log\log\log T$.