The number of finite non-isomorphic abelian groups in mean square.Article
Authors: Aleksandar Ivić 1
NULL
Aleksandar Ivić
1 Katedra Matematike
Let $\Delta(x)=\sum_{n\leq x}a(n)-\sum_{j=1}^6 c_jx^{1/j}$ denote the error term in the abelian group problem. Using zeta-function methods it is proved that
$$\int_1^X\Delta^2(x)\,dx~<\!\!<~ X^{39/29} \log^2X$$
where the exponent $39/29=1.344827\ldots$ is close to the best possible exponent $4/3$ in this problem.
Keywords: number of non-isomorphic abelian groups,mean square estimates,power moments of the zeta-function.,[MATH] Mathematics [math]
Bibliographic References
1 Document citing this article
Aleksandar Ivić, 1992, On the error term for the counting functions of finite Abelian groups, Monatshefte für Mathematik, 114, 2, pp. 115-124, 10.1007/bf01535578.