Aidas Balčiūnas;Antanas Laurinčikas;Mindaugas Stoncelis, 2023, ON A DIRICHLET SERIES CONNECTED TO A PERIODIC HURWITZ ZETA-FUNCTION WITH TRANSCENDENTAL AND RATIONAL PARAMETER, Mathematical Modelling and Analysis, 28, 1, pp. 91-101, 10.3846/mma.2023.17222, https://doi.org/10.3846/mma.2023.17222.
Antanas Laurinčikas, 2020, Joint discrete universality for periodic zeta-functions. III, Quaestiones Mathematicae, 44, 12, pp. 1729-1743, 10.2989/16073606.2020.1825018.
KOHJI MATSUMOTO, arXiv (Cornell University), A SURVEY ON THE THEORY OF UNIVERSALITY FOR ZETA AND L-FUNCTIONS, pp. 95-144, 2015, Fukuoka, Japan, 10.1142/9789814644938_0004.
Łukasz Pańkowski, 2012, Hybrid universality theorem for L-functions without Euler product, Integral Transforms and Special Functions, 24, 1, pp. 39-49, 10.1080/10652469.2012.664550.
R. Kačinskaitė, 2011, Joint discrete universality of periodic zeta-functions, Integral Transforms and Special Functions, 22, 8, pp. 593-601, 10.1080/10652469.2010.536409.
Roma kačinskaitė;Antanas Laurinčikas, 2011, The joint distribution of periodic zeta-functions, Studia Scientiarum Mathematicarum Hungarica, 48, 2, pp. 257-279, 10.1556/sscmath.48.2011.2.1162.
Antanas Laurinčikas, 2010, Joint universality of zeta-functions with periodic coefficients, Izvestiya Mathematics, 74, 3, pp. 515-539, 10.1070/im2010v074n03abeh002497.
A. Laurinčikas;R. Macaitienė, 2009, The discrete universality of the periodic Hurwitz zeta function, Integral Transforms and Special Functions, 20, 9, pp. 673-686, 10.1080/10652460902742788.
A. Laurinčikas;S. Skerstonaitė, 2009, A joint universality theorem for periodic Hurwitz zeta-functions. II, Lithuanian Mathematical Journal, 49, 3, pp. 287-296, 10.1007/s10986-009-9055-7.