Hardy-Ramanujan Journal |

This paper gives a complete four-parameter solution of the simultaneous diophantine equations $x+y+z=u+v+w, x^3+y^3+z^3=u^3+v^3+w^3,$ in terms of quadratic polynomials in which each parameter occurs only in the first degree. This solution is much simpler than the complete solutions of these equations published earlier. This simple solution is used to obtain solutions of several related diophantine problems. For instance, the paper gives a parametric solution of the arbitrarily long simultaneous diophantine chains of the type $x^k_1+y^k_1+z^k_1=x^k_2+y^k_2+z^k_2=\ldots=x^k_n+y^k_n+z^k_n=\ldots,~~k=1,3.$ Further, the complete ideal symmetric solution of the Tarry-Escott problem of degree $4$ is obtained, and it is also shown that any arbitrarily given integer can be expressed as the sum of four distinct nonzero integers such that the sum of the cubes of these four integers is equal to the cube of the given integer.

Source : oai:HAL:hal-01112553v1

Volume: Volume 33 - 2010

Published on: January 1, 2010

Imported on: March 3, 2015

Keywords: equal sums of powers,equal sums of cubes,Tarry-Escott problem,diophantine chains Mathematics,[MATH] Mathematics [math]

This page has been seen 94 times.

This article's PDF has been downloaded 413 times.