Using a method due to G. J. Rieger, we show that for $1 < c < 2 $ one has, as $x$ tends to infinity $$\textrm{Card}{n \leq x : \lfloor{n^c}\rfloor} \ \textrm{ is cube-free} } = \frac{x}{\zeta(3)} + O (x^{ (c+1)/3} \log x)$$ , thus improving on a recent result by Zhang Min and Li Jinjiang.
Keywords: Segal-Piatetski-Shapiro sequences,cube-free numbers,estimation of trigonometric sums,discrepancy 2010 Mathematics Subject Classification 11B75,11N37,11N56,11L03,11L07,
[
MATH
]
Mathematics [math],
[
MATH.MATH-NT
]
Mathematics [math]/Number Theory [math.NT]
Bibliographic References
1 Document citing this article
Teerapat Srichan, 2022, Multiplicative functions of special type on Piatetski-Shapiro sequences, Mathematica Slovaca, 72, 5, pp. 1145-1150, 10.1515/ms-2022-0078.