Hardy-Ramanujan Journal |

The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.

Source : oai:HAL:hal-01103723v1

Volume: Volume 1 - 1978

Published on: January 1, 1978

Imported on: March 3, 2015

Keywords: Riemann zeta-function,Dirichlet series.,Ω-estimates,[MATH] Mathematics [math]

This page has been seen 396 times.

This article's PDF has been downloaded 353 times.