Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series 1
Authors: K Ramachandra 1
NULL
K Ramachandra
1 Tata Institute for Fundamental Research
The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results.
%It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.
Some remarks on a theorem of montgomery and vaughan
17 Documents citing this article
Source : OpenCitations
Alkan, E.; Ledoan, A. H.; Zaharescu, A., 2008, Asymptotic Behavior Of The Irrational Factor, Acta Mathematica Hungarica, 121, 3, pp. 293-305, 10.1007/s10474-008-7212-9.
Conrey, J. B.; Ghosh, Amit, 1984, On Mean Values Of The ZetaâFunction, Mathematika, 31, 1, pp. 159-161, 10.1112/s0025579300010767.
Gerspach, Maxim, 0000-0003-1885-471, 2020, Low Pseudomoments Of The Riemann Zeta Function And Its Powers, International Mathematics Research Notices, 2022, 1, pp. 625-664, 10.1093/imrn/rnaa159.
Grechuk, Bogdan, 2021, Analysis, Landscape Of 21St Century Mathematics, pp. 103-171, 10.1007/978-3-030-80627-9_3.
Ji, Guanghua, 2016, Lower Bound For The Higher Moment Of Symmetric Square $L$-functions, Rocky Mountain Journal Of Mathematics, 46, 3, 10.1216/rmj-2016-46-3-915.
Kacenas, A.; Laurincikas, A.; Zamarys, S., 2005, On Fractional Moments Of Dirichlet L-Functions, Lithuanian Mathematical Transactions, 45, 2, pp. 173-191, 10.1007/s10986-005-0022-7.
LaurinÄikas, A., 1995, On The Moments Of The Riemann Zeta-Function Near The Critical Line, Lithuanian Mathematical Transactions, 35, 3, pp. 262-283, 10.1007/bf02350362.
Ledoan, Andrew; Zaharescu, Alexandru, 2009, Real Moments Of The Restrictive Factor, Proceedings - Mathematical Sciences, 119, 4, pp. 559-566, 10.1007/s12044-009-0039-7.
Lee, Yoonbok, 2014, Zero-density Estimates And Fractional Moments Of Hecke L -Functions, Journal Of Number Theory, 141, pp. 225-241, 10.1016/j.jnt.2014.02.006.
Milinovich, Micah; Turnage-Butterbaugh, Caroline L., 2014, Moments Of Products Of Automorphic L-functions, Journal Of Number Theory, 139, pp. 175-204, 10.1016/j.jnt.2013.12.012.
Narkiewicz, WĹadysĹaw, 2012, The Twenties, Springer Monographs In Mathematics, pp. 131-193, 10.1007/978-0-85729-532-3_3.
Radziwiłł, Maksym; Soundararajan, Kannan, 2012, Continuous Lower Bounds For Moments Of Zeta Andl‐Functions, Mathematika, 59, 1, pp. 119-128, 10.1112/s0025579312001088.
Sahay, Anurag, 2022, Moments Of The Hurwitz Zeta Function On The Critical Line, Mathematical Proceedings Of The Cambridge Philosophical Society, pp. 1-31, 10.1017/s0305004122000457.
Saksman, Eero; Webb, Christian, 2020, The Riemann Zeta Function And Gaussian Multiplicative Chaos: Statistics On The Critical Line, The Annals Of Probability, 48, 6, 10.1214/20-aop1433.
Snaith, N. C., 2010, Riemann Zeros And Random Matrix Theory, Milan Journal Of Mathematics, 78, 1, pp. 135-152, 10.1007/s00032-010-0114-7.
Sono, Keiju, 2012, Lower Bounds For The Moments Of The Derivatives Of The Riemann Zeta-Function And Dirichlet L-functions, Lithuanian Mathematical Transactions, 52, 4, pp. 420-434, 10.1007/s10986-012-9184-2.
Soundararajan, Kannan, 2009, Moments Of The Riemann Zeta Function, Annals Of Mathematics, 170, 2, pp. 981-993, 10.4007/annals.2009.170.981.