The present paper is concerned with Ω-estimates of the quantity (1/H)∫T+HT|(dm/dsm)ζk(12+it)|dt
where k is a positive number (not necessarily an integer), m a nonnegative integer, and (logT)δ≤H≤T, where δ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if 2k≥1 and T≥T0(δ), then (1/H)∫T+HT|ζ(12+it)|2kdt>(logH)k2(loglogH)−C
Eero Saksman;Christian Webb, 2020, The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line, The Annals of Probability, 48, 6, 10.1214/20-aop1433, https://doi.org/10.1214/20-aop1433.
Joseph Najnudel, 2020, EXPONENTIAL MOMENTS OF THE ARGUMENT OF THE RIEMANN ZETA FUNCTION ON THE CRITICAL LINE, arXiv (Cornell University), 66, 3, pp. 612-621, 10.1112/mtk.12031, https://arxiv.org/abs/1804.00343.
Keiju Sono, 2012, Lower bounds for the moments of the derivatives of the Riemann zeta-function and Dirichlet L-functions, Lithuanian Mathematical Journal, 52, 4, pp. 420-434, 10.1007/s10986-012-9184-2.
Andrew Ledoan;Alexandru Zaharescu, 2009, Real moments of the restrictive factor, Proceedings - Mathematical Sciences, 119, 4, pp. 559-566, 10.1007/s12044-009-0039-7.
E. Alkan;A. H. Ledoan;A. Zaharescu, 2008, Asymptotic behavior of the irrational factor, Acta Mathematica Academiae Scientiarum Hungaricae, 121, 3, pp. 293-305, 10.1007/s10474-008-7212-9.
A. Kacenas;A. Laurincikas;S. Zamarys, 2005, On Fractional Moments of Dirichlet L-Functions, Lithuanian Mathematical Journal, 45, 2, pp. 173-191, 10.1007/s10986-005-0022-7.
A. Laurinčikas, 1995, On the moments of the Riemann zeta-function near the critical line, Lithuanian Mathematical Journal, 35, 3, pp. 262-283, 10.1007/bf02350362.
J. B. Conrey;A. Ghosh, 1984, On mean values of the zeta‐function, Mathematika, 31, 1, pp. 159-161, 10.1112/s0025579300010767.