Nayandeep Deka Baruah ; Hirakjyoti Das
-
Generating functions and congruences for 9-regular and 27-regular partitions in 3 colours
hrj:8927 -
Hardy-Ramanujan Journal,
January 9, 2022,
Volume 44 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2021
-
https://doi.org/10.46298/hrj.2022.8927
Generating functions and congruences for 9-regular and 27-regular partitions in 3 colours
Authors: Nayandeep Deka Baruah ; Hirakjyoti Das
NULL##0000-0002-5540-5625
Nayandeep Deka Baruah;Hirakjyoti Das
Let $b_{\ell;3}(n)$ denote the number of $\ell$-regular partitions of $n$ in 3 colours. In this paper, we find some general generating functions and new infinite families of congruences modulo arbitrary powers of $3$ when $\ell\in\{9,27\}$. For instance, for positive integers $n$ and $k$, we have\begin{align*}b_{9;3}\left(3^k\cdot n+3^k-1\right)&\equiv0~\left(\mathrm{mod}~3^{2k}\right),\\b_{27;3}\left(3^{2k+3}\cdot n+\dfrac{3^{2k+4}-13}{4}\right)&\equiv0~\left(\mathrm{mod}~3^{2k+5}\right).\end{align*}