Jeremy Lovejoy - Quantum q-series identities

hrj:8930 - Hardy-Ramanujan Journal, January 9, 2022, Volume 44 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2021 - https://doi.org/10.46298/hrj.2022.8930
Quantum q-series identitiesArticle

Authors: Jeremy Lovejoy ORCID1,2

  • 1 CNRS, Universite de Paris
  • 2 Institut de Recherche en Informatique Fondamentale

As analytic statements, classical $q$-series identities are equalities between power series for $|q|<1$. This paper concerns a different kind of identity, which we call a quantum $q$-series identity. By a quantum $q$-series identity we mean an identity which does not hold as an equality between power series inside the unit disk in the classical sense, but does hold on a dense subset of the boundary -- namely, at roots of unity. Prototypical examples were given over thirty years ago by Cohen and more recently by Bryson-Ono-Pitman-Rhoades and Folsom-Ki-Vu-Yang. We show how these and numerous other quantum $q$-series identities can all be easily deduced from one simple classical $q$-series transformation. We then use other results from the theory of $q$-hypergeometric series to find many more such identities. Some of these involve Ramanujan's false theta functions and/or mock theta functions.


Volume: Volume 44 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2021
Published on: January 9, 2022
Accepted on: January 9, 2022
Submitted on: January 6, 2022
Keywords: $q$-series identities,Ramanujan,2010 Mathematics Subject classification: 33D15,[MATH]Mathematics [math]

Classifications

Consultation statistics

This page has been seen 353 times.
This article's PDF has been downloaded 507 times.